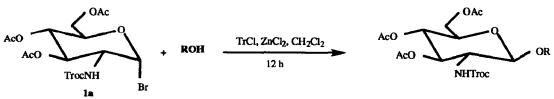


Pergamon

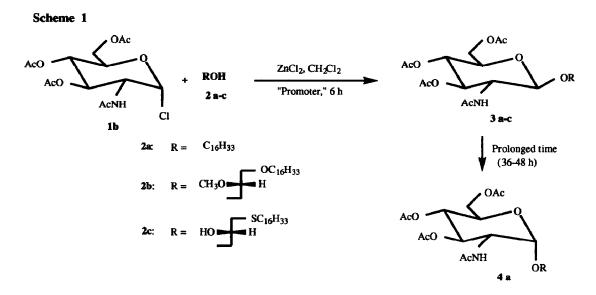
0040-4039(93)E0263-J

Preparation of Ether-linked 2-Acetamido-2-deoxy β -Glycolipids via Zinc Chloride Promoted Coupling of Ac₄GlcNAc-Cl with Lipid Hydroxy Groups


Erukulla Ravi Kumar, Hoe-Sup Byun, Sihe Wang, and Robert Bittman*

Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, New York 11367-1597

Abstract: Stereoselective glycosidation of lipid hydroxy groups has been achieved using 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- α -D-glycosyl chloride as the glycosyl donor in CH₂Cl₂. In the presence of ZnCl₂ (1 equiv.) and various "promoters" (1 equiv.) such as Ph₃CCl, 18-crown-6/KCl, *n*-Bu₄NBr, or Me₃SiCl, β-glycolipid conjugates are formed as the initial products, but they undergo anomerization on prolonged reaction times. The promoters may enhance the solubility of ZnCl₂ in CH₂Cl₂.


As part of our program on the study of biologically active ether-linked glycolipids,¹ we sought to prepare ether glycolipids having a 2-acetamido-2-deoxy group. 2-Acetamido-2-deoxyglycolipid conjugates are of interest as potentially new biologically active compounds. Zinc chloride has been used previously to promote glycosidation reactions with a high β/α ratio.² Szabò and Polt reported that ZnCl₂ activated the coupling of a GlcNHTroc donor with a serine or threonine ester derivative, forming 1-O-acyl- β glycopyranose.³ α -Glycosidation of 1-O-acyl- β -glucopyranoses with alcohol was reported to be catalyzed by trityl cation.⁴ Recently, Higashi *et al.*⁵ reported that an equimolar mixture of trityl chloride (TrCl) and ZnCl₂ promoted the coupling reaction between 2-trichloroethoxycarbonylamino(NHTroc)-2-deoxy-3,4,6-tri-Oacetyl- α -D-glucopyranosyl bromide (1a) and an alcohol, giving the β anomer selectively (Eq. 1).

Equation 1

In efforts to avoid use of 2-deoxy-2NHTroc-protected α -glucosyl bromide [which requires three steps to prepare starting from 2-deoxyglucosamine (step 1: glucosamine to 2-NH-Troc-glucosamine; step 2: Ac₂O;

step 3: TMSBr)], we tried to couple the bromo analog of 2-acetamido sugar 1 b to 1-O-hexadecyl-2-O-methylsn-glycerol (2b) by using an equimolar mixture of $ZnCl_2$ and TrCl. It was observed that the 2-acetamido-1bromo sugar was highly unstable under the reaction conditions used, eliminating HBr and forming a stable oxazolidine intermediate. However, we found that 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl- α -D-glucopyranosyl chloride (Ac₄GlcNAc-Cl) (1b) was more stable than the bromo sugar and could be made in one step from 2-acetamido-2-deoxyglucosamine.⁶ Although 1b is generally not used as a glycosyl donor because of oxazolidine formation, we report here that Ac₄GlcNAc-Cl (1b) is a useful starting material for the preparation of 2-acetamido-containing glycolipids. In this report we describe the coupling of lipid hydroxy groups (2) to 1b in the presence of various "promoters" to give initially β -glycolipid 3, which is isomerized on prolonged reaction times to the α anomer.

The reaction of 1-O-hexadecyl-2-O-methyl-sn-glycerol (2b) with 1b in the presence of TrCl as the promoter and $ZnCl_2$ gave β -glycolipid 3b selectively in 70% yield after stirring for 6 h at room temperature (Scheme 1).⁷ Unsaturated alcohols such as phytol and geraniol failed to undergo glycosidation, as did secondary alcohols such as cholesterol and 1-O-hexadecyl-3-O-methyl-sn-glycerol. The glycosidation of 1-thiohexadecyl-sn-glycerol (2c) took place in 6 h specifically at the primary hydroxyl group, giving 3c in 50% yield, together with 20% of the starting glycerol 2c, indicating that it is not necessary to protect the secondary hydroxyl group of the glycerol moiety. Scheme 1 is noteworthy for the lack of need to use any protecting group strategy at the 2 position, which is advantageous since the 2-acetamido conjugate 3 was desired for application in growth inhibition studies.

Entry	Promoter ⁴	Time (h)	Anomer formed	Yield (%) ^b	Time (h)	Anomer formed	Yield (%) ^c
1	TrCl	6	β	82	36	α	70
2	Ph ₃ CPF ₆				36	α	22
3	HCI				48	α	46
4 KC	Cl, 18-crown-6	6	β	75	36	α	65
5	Bu ₄ NBr	6	β	65	36	α	45
6	TMSCI	б	β	55	36	α	45

Table 1. Glycolipid 3a/4a obtained by reaction of 1b with hexadecyl alcohol in the presence of ZnCl₂ and promoter at 25 °C

^aIn the absence of any co-promoter (i.e., 1 equiv. of ZnCl₂ alone), the glycosidation reaction was sluggish; after a reaction period of 3-4 days, only α anomer was obtained. ^b Isolated yields of the β anomers are shown. ^cIsolated yields of the α anomers are shown. Traces of β anomer were present based on TLC analysis (ethyl acetate/hexanes 2:1; R_f α anomer 0.60; R_f β anomer 0.54).

Since the role of TrCl as a co-promoter in the β -glycosidation reaction was not clear to us, we examined whether glycosidation of **2a** occurred without TrCl (Table 1). The reactions of **1b** and **2a** with triphenylcarbenium hexafluorophosphate and ZnCl₂ (entry 2) or with ZnCl₂ and HCl gas (entry 3) were very sluggish because of the low solubility of ZnCl₂ in methylene chloride. These coupling reactions required longer time and afforded the α anomer as the major product. We also used other promoters such as 18-crown-6 and KCl, Bu₄NBr, and TMSCl (1 equiv. of each). The reactions of **1b** and **2a** with these promoters gave β -glycolipids in good yields (entries 4-6) after 6 h. We also observed that shorter reaction time gives the β -anomer specifically, indicating that the reaction is under kinetic control irrespective of the promoter. Thus, the results shown in Table 1 indicate that *TrCl is not required* to obtain β -glycosidation of **2a**.

In a further efforts to examine the role of TrCl in the $ZnCl_2$ -catalyzed glycosidation reaction, we prepared *n*-hexadecyl trityl ether. No reaction was observed when ROTr was stirred for more than 2 days in CH_2Cl_2 with 1 b in the presence of $ZnCl_2$, indicating that the lipid alcohol is not undergoing derivatization during the $ZnCl_2/TrCl$ -promoted glycosidation reaction. A working hypothesis is that TrCl and the other promoters shown in Table 1 enhance the solubility of $ZnCl_2$ in CH_2Cl_2 .

To examine whether a thermodynamic equilibrium between β and α glycolipid 3 can occur, we treated the isolated β anomer and the isolated α anomer separately with TrCl and ZnCl₂ in CH₂Cl₂. We observed that about 50% of the β anomer 3a was epimerized to α glycoside in 48 h at room temperature; however, there was no change in the stereochemistry of the α anomer. This result suggests that the α anomer is more stable than the β anomer. Anomerization of β to α of *O*-acylated derivatives of glycosides in the presence of Lewis acids are known to occur.9

In summary, we report here a simple and efficient method for the preparation of 2-acetamido-2-deoxy glycolipids in good yields by the reaction of primary lipid hydroxy groups with 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl- α -D-gluocopyranosyl chloride, various promoters, and ZnCl₂ to afford β glycoside initially followed by isomerization to the α glycoside. The synthetic method presented here is applicable to the preparation of the other glycolipid conjugates.

Acknowledgments. This research was supported by National Institutes of Health Grant HL-16660. We thank Professor Robin Polt for a helpful discussion.

References

- Guivisdalsky, P. N.; Bittman, R.; Smith, Z.; Blank, M. L.; Snyder, F.; Howard, S.; Salari, H. J. Med. Chem. 1990, 33, 2614-2621.
- 2. Kallin, E.; Lönn, H.; Norberg, T. J. Carbohydr. Chem. 1990, 9, 721-733.
- 3. Szabó, L.; Polt, R. Carbohydr. Res. 1993, in press.
- 4. Mukaiyama, T.; Kobayashi, S.; Shoda, S. Chem. Lett. 1984, 907-910.
- 5. Higashi, K.; Nakayama, K.; Soga, T.; Shioya, E.; Uoto, K.; Kusama, T. Chem. Pharm. Bull. 1990, 38, 3280-3282.
- 6. Horton, D. Org. Synth.; Wiley: New York; Collective Vol. V, 1973, pp 1-5.
- 7. In a typical procedure for the β -glycosidation, to a suspension of ZnCl_2 (1 equiv.) and promoter (1 equiv.) in dry CH_2Cl_2 were added $\text{Ac}_4\text{GlcNAc-Cl}$ (1b, 2 equiv.) and hydroxy lipid acceptor (2a-c, 1 equiv.). The reaction mixture was stirred at room temperature, and the progress of the reaction was monitored by TLC (developed in ethyl acetate). After 6 h, the reaction mixture was diluted with ethyl acetate, washed with 5% aqueous sodium bicarbonate solution and with water, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography, giving the desired β glycolipids in 55-82% yield.⁸
- 8. All compounds gave satisfactory analytical and spectroscopic data. The analytical and spectroscopic data of **3b**: $R_f 0.54$ (ethyl acetate); $[\alpha]_D^{25} -1.31^\circ$ (c 5.6, CHCl₃); ¹H NMR (200 MHz, CDCl₃): δ 0.80 (t, 3H, J = 6.0 Hz, CH₃), 1.25 (br. m, 26H, (CH₂)₁₃CH₃), 1.45 (m, 2H, OCH₂CH₂), 1.87, 1.95, and 2.01 (s, 12H, OAc, and NAc), 3.32-3.41 (m, 8H, with a singlet at δ 3.36, $CH_2OCH_2C_{15}H_{31}$, CH_3OCH), 3.63 (m, 3H, H-5 and OCH₂), 3.81 (m, 1H, H-2), 4.02 (dd, 1H, H-6a), 4.08 (dd, 1H, J = 4.57 Hz, 12.22 Hz, H-6b), 4.60 (d, 1H, J = 8.34 Hz, H-1), 5.05 (t, 1H, J = 9.50 Hz, H-4), 5.17 (t, 1H, J = 9.83 Hz, H-3), 5.84 (d, 1H, J = 8.51 Hz, NH).
- 9. Lemieux, R. U. Adv. Carb. Chem. Biochem. 1954, 9, 1-57.

(Received in USA 29 June 1993; revised 9 November 1993; accepted 17 November 1993)